关键词:   
THiCweed: fast, sensitive detection of sequence features by clustering big datasets
We present THiCweed, a new approach to analyzing transcription factor binding data from high-throughput chromatin immunoprecipitation-sequencing (ChIP-seq) experiments. THiCweed clusters bound regions based on sequence similarity using a divisive hierarchical clustering approach based on sequence similarity within sliding windows, while exploring both strands. ThiCweed is specially geared toward data containing mixtures of motifs, which present a challenge to traditional motif-finders. Our implementation is significantly faster than standard motif-finding programs, able to process 30 000 peaks in 1-2 h, on a single CPU core of a desktop computer. On synthetic data containing mixtures of motifs it is as accurate or more accurate than all other tested programs. THiCweed performs best with large 'window' sizes (≥50 bp), much longer than typical binding sites (7-15 bp). On real data it successfully recovers literature motifs, but also uncovers complex sequence characteristics in flanking DNA, variant motifs and secondary motifs even when they occur in <5% of the input, all of which appear biologically relevant. We also find recurring sequence patterns across diverse ChIP-seq datasets, possibly related to chromatin architecture and looping. THiCweed thus goes beyond traditional motif finding to give new insights into genomic transcription factor-binding complexity.
pmid: 29267972 Nucleic Acids Res 影响因子: 11.147 发表日期: 20180316 官网 免费下载 全文下载
文献:

评论:

    菠萝视频下载安装