关键词:   
The Tudor protein Veneno assembles the ping-pong amplification complex that produces viral piRNAs in Aedes mosquitoes
PIWI-interacting RNAs (piRNAs) comprise a class of small RNAs best known for suppressing transposable elements in germline tissues. The vector mosquito Aedes aegypti encodes seven PIWI genes, four of which are somatically expressed. This somatic piRNA pathway generates piRNAs from viral RNA during infection with cytoplasmic RNA viruses through ping-pong amplification by the PIWI proteins Ago3 and Piwi5. Yet, additional insights into the molecular mechanisms mediating non-canonical piRNA production are lacking. TUDOR-domain containing (Tudor) proteins facilitate piRNA biogenesis in Drosophila melanogaster and other model organisms. We thus hypothesized that Tudor proteins are required for viral piRNA production and performed a knockdown screen targeting all A. aegypti Tudor genes. Knockdown of the Tudor genes AAEL012437, Vreteno, Yb, SMN and AAEL008101-RB resulted in significantly reduced viral piRNA levels, with AAEL012437-depletion having the strongest effect. This protein, which we named Veneno, associates directly with Ago3 in an sDMA-dependent manner and localizes in cytoplasmic foci reminiscent of piRNA processing granules of Drosophila. Veneno-interactome analyses reveal a network of co-factors including the orthologs of the Drosophila piRNA pathway components Vasa and Yb, which in turn interacts with Piwi5. We propose that Veneno assembles a multi-protein complex for ping-pong dependent piRNA production from viral RNA.
pmid: 30566680 Nucleic Acids Res 影响因子: 11.147 发表日期: 20190318 官网 免费下载 全文下载
文献:

评论:

    菠萝视频下载安装