关键词:   
Deep representation learning for domain adaptable classification of infrared spectral imaging data
MOTIVATION: Applying infrared microscopy in the context of tissue diagnostics heavily relies on computationally preprocessing the infrared pixel spectra that constitute an infrared microscopic image. Existing approaches involve physical models, which are non-linear in nature and lead to classifiers that do not generalize well, e.g. across different types of tissue preparation. Furthermore, existing preprocessing approaches involve iterative procedures that are computationally demanding, so that computation time required for preprocessing does not keep pace with recent progress in infrared microscopes which can capture whole-slide images within minutes. RESULTS: We investigate the application of stacked contractive autoencoders as an unsupervised approach to preprocess infrared microscopic pixel spectra, followed by supervised fine-tuning to obtain neural networks that can reliably resolve tissue structure. To validate the robustness of the resulting classifier, we demonstrate that a network trained on embedded tissue can be transferred to classify fresh frozen tissue. The features obtained from unsupervised pretraining thus generalize across the large spectral differences between embedded and fresh frozen tissue, where under previous approaches seperate classifiers had to be trained from scratch. AVAILABILITY: Our implementation can be downloaded from https://github.com/arnrau/SCAE_IR_Spectral_Imaging. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
pmid: 31225858 Bioinformatics 影响因子: 4.531 发表日期: 20190621 官网 免费下载
文献:

评论:

    菠萝视频下载安装